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Epidemic spreading in scale-free networksRomualdo Pastor-Satorras1 and Alessandro Vespignani21 Dept. de F��sica i Enginyeria Nuclear, Universitat Polit�ecnica de Catalunya,Campus Nord, Bloc B4/B5, 08034 Barcelona, Spain2 The Abdus Salam International Centre for Theoretical Physics (ICTP), P.O. Box 586, 34100Trieste, Italy(October 20, 2000)AbstractThe Internet, as well as many other networks, has a very complex connectiv-ity recently modeled by the class of scale-free networks. This feature, whichappears to be very e�cient for a communications network, favors at the sametime the spreading of computer viruses. We analyze real data from computervirus infections and �nd the average lifetime and prevalence of viral strains onthe Internet. We de�ne a dynamical model for the spreading of infections onscale-free networks, �nding the absence of an epidemic threshold and its asso-ciated critical behavior. This new epidemiological framework rationalize dataof computer viruses and could help in the understanding of other spreadingphenomena on communication and social networks.PACS numbers: 05.70.Ln, 05.50.+q
Typeset using REVTEX1



www.manaraa.com

Many social, biological, and communication systems can be properly described by com-plex networks whose nodes represent individuals or organizations, and links mimic the in-teractions among them [1,2]. Particularly interesting examples are the Internet and theworld-wide-web, which have been extensively studied because of their technological andeconomical relevance [3{5]. These studies have revealed, among other facts, the scale-freenature of these networks [3,5]. This results in the power-law distribution P (k) � k� for theprobability that a node of the network has k connections to other nodes, with an exponent that ranges between 2 and 3. The importance of local clustering is indeed the key ingredientin the modeling of these networks with the recent introduction of scale-free (SF) graphs [6].In view of the wide occurrence of complex networks in nature it is of great interestto inspect the e�ect of their features on epidemic and disease spreading [7], and more ingeneral in the context of the nonequilibrium phase transitions typical of these phenomena[8]. The study of epidemics on these networks �nds an immediate practical application inthe understanding of computer virus spreading [9,10], and could also be relevant to the �eldsof epidemiology [11] and pollution control [12].In this Letter, we analyze data from real computer virus epidemics, providing a statisticalcharacterization that points out the importance of incorporating the peculiar topology ofscale-free networks in the theoretical description of these infections. With this aim, we studyby large scale simulations and analytical methods the susceptible-infected-susceptible [11]model on SF graphs. We �nd the absence of an epidemic threshold and its associated criticalbehavior, which implies that SF networks are prone to the spreading and the persistence ofinfections whatever spreading rate the epidemic agents possess. The absence of the epidemicthreshold|a standard element in mathematical epidemiology [11]{radically changes many ofthe standard conclusions drawn in epidemic modeling. The present results are also relevantin the �eld of absorbing-state phase transitions and catalytic reactions [8].The epidemiological analysis of computer viruses has been the subject of a continuousinterest in the computer science community [10,13{15], following mainly approaches bor-rowed from biological epidemiology [11]. The standard model used in the study of computer2
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virus infections is the susceptible-infected-susceptible (SIS) epidemiological model. Eachnode of the network represents an individual and each link is a connection along which theinfection can spread to other systems. This model relies on a coarse grained descriptionof individuals in the population. Individuals exist only in two discrete states, \healthy" or\infected". At each time step, each susceptible (healthy) node is infected with rate � if itis connected to one or more infected nodes. At the same time, infected nodes are curedand become again susceptible with rate �, de�ning an e�ective spreading rate � = �=�.Without lack of generality, we can set � = 1. The updating can be performed both withparallel and sequential dynamics [8]. In models with local connectivity (Euclidean latticesand mean-�eld models), the most signi�cant result is the general prediction of a nonzeroepidemic threshold �c [8,11]. If the value of � is above the threshold, � � �c, the infectionspreads and becomes persistent. Below it, � < �c, the infection dies out exponentially fast.The epidemic threshold is actually equivalent to a critical point in a nonequilibrium phasetransition. In this case, the critical point separates an active phase with a stationary densityof infected nodes from a phase with only healthy nodes and null activity. In particular, it iseasy to recognize that the SIS model is a generalization of the contact process (CP) model,that has been extensively studied in the context of absorbing-state phase transitions [8].Statistical observations of virus incidents in the wild, on the other hand, indicate that allviruses that are able to pervade, spread much slower than exponentially, and saturate to avery low level of persistence, a�ecting just a tiny fraction of the total number of computers[10]. This fact is in striking contradiction with the theoretical predictions unless in thevery unlikely chance that all computer viruses have an e�ective spreading rate tuned justin�nitesimally above the threshold. This points out that the view obtained so far with themodeling of computer virus epidemics is very instructive but not completely adequate torepresent the real phenomenon.In order to gain further insight on the spreading properties of viruses in the wild, wehave analyzed the prevalence data reported by the Virus Bulletin [16] from February 1996 toMarch 2000. We have analyzed in particular the surviving probability of homogeneous groups3
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of viruses, classi�ed according to their infection mechanism [9]. We consider the total numberof viruses of a given strain that born and die within our observation window. Hence, wecalculate the surviving probability Ps(t) of the strain as the ratio of viruses still alive at timet after their birth and the total number of observed viruses. Fig. 1 shows that the survivingprobability su�ers a sharp drop in the �rst two months of a virus' life. This is a well-knownfeature [10,13] indicating that statistically only a small percentage of viruses give rise to asigni�cant outbreak in the computer community. Fig. 1, on the other hand, shows for largertimes a clean exponential tail, Ps(t) � exp(�t=� ), where � represents the characteristiclife-time of the virus strain [17]. The numerical �t of the data yields � ' 14 months forboot and macro viruses and � ' 6�9 months for �le viruses. These characteristic times areimpressively large if compared with the interval in which anti-virus software is available onthe market (usually within days or weeks after the �rst incident report) and indicate thatthe viral persistence time scale is more related to the implementation of prophylactic safetymeasures than to the timely availability of the speci�c anti-virus. These external factors,however, are not possibly competing on the short time scale of the viruses spread (days orweeks), and again we face the very puzzling question of why viruses seem to have access topersistent low prevalence levels but never grow exponentially.The key point to understand the puzzling properties exhibited by computer viruses re-sides in the capacity of many of them to be borne by electronic mail as an apparentlyinnocuous attachment [10]. Having this property in mind, it is easy to realize that thetopology of the connections between individuals cannot be correctly represented by an Eu-clidean lattice, or a mean-�eld model. In this sense, these connections should instead haveessentially the topology of the Internet, through which electronic mail travels. The scale-freeconnectivity of the Internet implies that each node has a statistically signi�cant probabilityof having a very large number of connections compared to the average connectivity hki ofthe network. That opposes to conventional random networks (local or nonlocal) in whicheach node has approximately the same number of links k ' hki [18]. The fact that all virusstrains qualitatively show the same statistical features indicates that very likely all of them4
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spread on networks with connectivity properties analogous to those of the Internet [19]. It isthen natural to foresee that scale-free properties should be included in a theory of epidemicspreading of computer viruses.To address the e�ects of scale-free connectivity in epidemic spreading we study the SISmodel on the SF network. We consider the graph generated by using the algorithm devisedin Refs. [6]: We start from a small number m0 of disconnected nodes; every time step a newvertex is added, with m links that are connected to an old node i with probability ki=Pj kj.After iterating this scheme a su�cient number of times, we obtain a network composed byN nodes with connectivity distribution P (k) � k�3 and average connectivity hki = 2m.In this work we take m = 3. We have performed numerical simulations on graphs withnumber of nodes ranging from N = 103 to N = 8:5� 106 and studied the variation in timeand the stationary properties of the density of infected nodes � in surviving infections; i.e.the virus prevalence. Initially we infect half of the nodes in the network, and iterate therules of the SIS model with parallel updating. After an initial transient regime, the systemstabilizes in a steady state with a constant average density of infected nodes. The prevalenceis computed averaging over at least 100 di�erent starting con�gurations, performed on atleast 10 di�erent realizations of the random networks.The �rst arresting evidence from simulations is the absence of an epidemic threshold,i.e., �c = 0. In Fig. 2 we show the virus prevalence in the steady state that decays withdecreasing � as � � exp(�C=�), where C is a constant. This implies that for any �nitevalue of � the virus can pervade the system with a �nite prevalence, in su�ciently largenetworks. In all networks with bounded connectivity the steady state prevalence is alwaysnull below the epidemic threshold; i.e. all infections die out. Further evidence to ourresults is given by the total absence of scaling of � with the number of nodes that is, on thecontrary, typical of epidemic transitions in the proximity of a �nite threshold [8]. This allowsus to exclude the presence of any spurious results due to network �nite size e�ects. Thepresent result can be intuitively understood by noticing that for usual lattices, the higherthe node's connectivity, the smaller the epidemic threshold. In a SF network the unbounded5
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uctuations in connectivity (hk2i = 1) plays the role of an in�nite connectivity, annullingthus the threshold.Finally, we analyze the spreading of infections starting from a localized virus source. Weobserve that the spreading growth in time has an algebraic form, that is in agreement withreal data that never found an exponential increase of a virus in the wild. Noteworthy, byapplying the de�nition of surviving probability Ps(t) used to analyze real data, we recoverin our model the same exponential behavior in time (see Fig. 3a). The characteristic life-time depends on the spreading rate and the network sizes, allowing us to relate the averagelifetime of a viral strain with an e�ective spreading rate and the Internet size [20]. At thesame time, the divergence of lifetimes for larger networks points out the possible increasingof the viruses lifetime during the eventual expansion of the Internet.We can also approach the system analytically by writing the mean-�eld equation gov-erning the time evolution of �(t). In order to take into account connectivity uctuations,we consider the relative density �k(t) of infected nodes with given connectivity k; i.e theprobability that a node with k links is infected. The dynamical mean-�eld reaction rateequations can be written as [8]@t�k(t) = ��k(t) + �k(1 � �k(t))�(�): (1)The creation term considers the probability that a node with k links is healthy (1 � �k(t))and gets the infection via a connected node. The probability of this event is proportional tothe infection rate, the number of connections, and the probability �(�) that any given linkpoints to an infected node. By imposing stationarity (@t�k(t) = 0) we �nd the stationarydensities �k = k��(�)1 + k��(�) ; (2)denoting that the higher the node connectivity, the higher the probability to be infected.This inhomogeneity must be taken into account in the self-consistent calculation of �(�).Indeed, the probability that a link points to a node with s links is proportional to sP (s).6
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In other words, a randomly chosen link is more likely to be connected to a node with highconnectivity, yielding �(�) =Xk kP (k)�kPs sP (s) : (3)Since �k is on its turn function of �(�), we obtain a consistency equation that allows toto �nd �(�). Finally we can evaluate the behavior of � by solving the second consistencyrelation � =Xk P (k)�k; (4)that expresses the average density of infected nodes in the system. In the SF model consid-ered here, we have a connectivity distribution P (k) = 2m2=k�3, where k as approximatedas a continuous variable [6]. In this case, integration of Eq.(3) allows to write �(�) as�(�) = e�1=m��m (1 � e�1=m�)�1; (5)from which, using Eq.(4), we �nd at lowest order in �:� = 2e�1=m� + h:o: : (6)This very intuitive calculation recovers the numerical �ndings and con�rms the surprisingabsence of any epidemic threshold or critical point in the model; i.e �c = 0. Finally, asa further check of our analytical results, we have numerically computed in our model therelative densities �k , recovering the predicted dependence upon k of Eq.(2) (see Fig. 3b).It is also worth remarking that the present framework can be generalized to networks with2 <  � 3, recovering qualitatively the same results [21].The emerging picture for epidemic spreading in complex networks emphasizes the role oftopology in epidemic modeling. In particular, the absence of epidemic threshold and criticalbehavior in a wide range of scale-free network provide an unexpected result that changesradically many standard conclusions on epidemic spreading. This indicates that infectionscan proliferate on these scale-free networks whatever spreading rates they may have. These7
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very bad news are, however, balanced by the exponentially small prevalence for a wide rangeof spreading rates (� << 1). This point appears to be particularly relevant in the case oftechnological networks such as the Internet and the world-wide-web that show scale-freeconnectivity with exponents  ' 2:5 [4,5]. For instance, the present picture �ts perfectlywith the observation from real data of computer virus spreading, and could solve the longstanding problem of the generalized low prevalence of computer viruses without assumingany global tuning of the spreading rates. The peculiar properties of scale-free networksalso open the path to many other questions concerning the e�ect of immunity and othermodi�cations of epidemic models. As well, the critical properties of many nonequilibriumsystems could be a�ected by the topology of scale-free networks. Given the wide context inwhich scale-free networks appears, the results obtained here and the proposed investigationscould have intriguing implications in biology and social systems.This work has been partially supported by the European Network Contract No. ERBFM-RXCT980183. RP-S also acknowledges support from the grant CICYT PB97-0693. Wethank S. Franz, M.-C. Miguel, R. V. Sol�e, M. Vergassola, S. Zapperi and R. Zecchina forhelpful comments and discussions.
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τ = 7 monthsFIG. 1. Surviving probability for viruses in the wild. The 814 di�erent viruses analyzed havebeen grouped in three main strains [9]: �le viruses infect a computer when running an infectedapplication; boot viruses also spread via infected applications, but copy themselves into the bootsector of the hard-drive and are thus immune to a computer reboot; macro viruses infect data�les and are thus platform-independent. It is evident in the plot the presence of an exponentialdecay, with characteristic time � ' 14 months for macro and boot viruses and � ' 7 months for�le viruses.
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FIG. 2. Persistence � as a function of 1=� for di�erent network sizes: N = 105 (+), N = 5�105(2), N = 106 (�), N = 5 � 106 (�), and N = 8:5 � 106 (3). The linear behavior on thesemi-logarithmic scale proves the stretched exponential behavior predicted for �. The full line is a�t to the form � � exp(�C=�).
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FIG. 3. a) Surviving probability Ps(t) for a spreading rate � = 0:065 in scale-free networks ofsize N = 5 � 105 (2), N = 2:5 � 104 (3), N = 1:25 � 104 (4), and N = 6:25 � 103 (�). Theexponential behavior, following a sharp initial drop, is compatible with the data analysis of Fig. 1.b) Relative density �k versus k�1 in a SF network of size N = 5� 105 and spreading rate � = 0:1.The plot recovers the form predicted in Eq.(2).
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